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ABSTRACT 

Although the Thomson scattering cross section of a free electron 

is quite small,  it leads to detectable scattering of radio waves even at 

frequencies thought to be so high,  until recently,  as to pass through the 

ionosphere unperturbed.    The body of theoretical work on the subject of 

scattering of the incoherent type has increased rapidly,  but the effect of 

the earth's magnetic field has not yet been analyzed.    In radio wave scattering 

the characteristics of the frequency spectrum are related to time variations 

of electron density in the direction of the   "scattering wave vector, "  which 

is directed perpendicular to the surfaces of constant path length,  measured 

from the transmitter to the receiver via the scattering element.    Since drift 

motions of charged particles across magnetic lines of force are restricted 

ir. the upper ionosphere,  we should expect the presence of the magnetic field 

to have an effect on the spectrum of scattering at least when the scattering 

wave vector is directed perpendicular to the field.    In fact,   it is shown in 

our analysis that in this case the spectrum will in the first approximation 

consist of lines,   if the electrons can be assumed to gyrate freely in the 

magnetic field.    The separation of the lines is equal to the electron gyro- 

magnetic frequency. 

The results of some recent theoretical work indicate that the assumption 

of free gyration of electrons probably cannot be made unless both the scale 

of scattering and the electron gyro radius are smaller than the Debye length. 
s 

An ionized medium tends to remain neutral over scales larger than the Debye 

length,  and we show that if at such scales of scattering the  ions   could be 

assumed to gyrate unperturbed,   our electron line spectrum would be replaced 
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by one in which the separation of the lines is equal to the gyromagnetic 

frequency of the positive ions.    At large scales,   however,   the effects of 

the internal electric fields on the behavior of the charged particles should 

be taken into account,   and until this is done in the presence of an imposed 

magnetic field,   it will not be clear to what extent the ion line spectrum is 

smeared by these fields.    Even if the charged particles could be assumed 

to gyrate unperturbed,   some smearing of the lines is shown co result if 

particles drift through the antenna beam,   and also if the magnetic lines 

of force do not lie in the surfaces of constant path length.    Curves given 

in the paper reveal that even if we started out with a line spectrum,  it 

would get smeared out quite rapidly as the angle between the surfaces of 

constant path length and the magnetic field is increased from zero. 

The envelope of the line spectrum is derived under the assumption 

that the spatial distribution of particles is random and that their velocity- 

distribution is Maxweliian.     The results show that if the radius of gyration 

of the particles is large compared to the scale of scattering,   the envelope 

is given simply by the thermal Doppler-spectrum curve that woulc have 

existed in the absence of any magnetic field.    In that case the presence of 

a magnetic field causes no change in the total width of the spectrum,   although 

it should in general lead to its narrowing,   if the gyro radii were small compared 

to the scale of scatterino 
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I,    INTRODUCTION 

An entirely new branch of the field of radic physics was opened by 
1 

W. E.   Gordon of Cornell University when he made his prfidiction     that 

detectable scattering of radio waves in the ionosphere will occur even at 

frequencies so high that the characteristic scale of scattering (X/4TT for 

backscatter) is much smaller than the electron mean free path. 

If the process of scattering is completely incoherent,   if all electrons 

can be thought to move undisturbed through spatial distances much larger 

than the scale of scattering,  and if the effects of the magnetic field can be 

neglected,  then the derivation of S<e spectrum of scattering can be accom- 

plished simply by converting the thermal velocity spectrum of electrons into 

the power spectrum of scattering by the concept of Doppler shifts.    The 

interesting problem of incoherent scattering in the presence of a constant 

external magnetic field,   which has not been treated previously,   will be 

analyzed in the chapters to follow.    We will find that if the radar beam is 

directed normal to the magnetic field,   its presence can have a profound 

effect on the spectrum of scattering.    We will also find that the gyromagnetic 

frequency of the charged particles plays an important role in the whole 

problem. 

The fundamental idea of the analysis is quite simple.    It was first 

discussed by the author in a seminar at Cornell in January,   1959-    We 

assume each electron to gyrate freely about a magnetic line of force at 

its thermal velocity.    The gyration of an electron will have the effect of 

modulating the phase of the radiation scattered by that electron.     The 

spectrum of the received scattered field of each electron will thus consist 
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of lines with the separation equal to the electron gyromagnetic frequency. 

The resultant spectrum is a superposition of such line spectra.    We have 

determined this by assuming the spatial distribution of electrons to be 

random (incoherent scattering) and the velocity distribution to be Maxwellian 

{thermal equilibrium).    It now appears fairly certain from some recent 

theoretical and experimental results that the assumption of a random dis- 

tribution and unperturbed electron motion cannot be made at scales of 

scattering comparable to,  or larger than,  the Debye length.    For our 

analysis to be applicable,   it is probably necessary for both the scale of 

scattering as well as for the average radius of gyration of the electrons 

to be much smaller than the Debye length.    However,  we will conclude in 

Section VIII-B  that our results might be useful even at large scales of 

scattering,  if the mass,  and thus also the gyro frequency,  of the positive 

ions is substituted for that of the electrons. 

It is evident that a satisfactory understanding of the problem of 

incoherent scattering in the ionosphere requires a good understanding of 

the dynamics of thermal plasma irregularities in the presence of an imposed 

magnetic field.    It is also clear that much work still needs to be done on 

this subject.    We hope that a comparison of our theoretical results with 

experimental data will in some measure facilitate future progress in under- 

standing the behavior of plasma irregularities. 

The results of this study will be presented as follows.    Chapter II 

gives a review and discussion of the general problem of the type of scattering 

predicted by W. E.   Gordon.    In Chapter III some expressions are derived 

for subsequent use for scattering by moving electrons.    In this chapter we 

also investigate the effect of an external magnetic field on the forced vibration 

of electrons. 
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In Chapter IV we derive a line spectrum of backscatter with the 

radar beam directed perpendicular to the magnetic field. We also die- 

cuss here the various effects tending to smear the line spectrum. The 

envelope of this line spectrum in derived in Chapter V, and is shown to 

be very well approximated by the Gaussian thermal Doppler spectrum 

that would have existed In the absence of a magnetic field. Some sample 

spectra are given at the end of Chapter  V. 

Chapter VI shows that it is possible to modify the results of Chapters 

IV and V so as to include propagation at any angle to the magnetic field for 

both backscatter and forward scatter.    It is shown that the spectrum of back- 

scatter gets smeared at relatively small deviations from the condition of 

perpendicularity.    Finally,  in Chapter VII the application of our work to 

scattering in the ionosphere is discussed. 

Except for the strength of the magnetic field,  which is in gauss,  all 

other parameters used in the analysis are measured in the mks system of 

units. 



II.    REVIEW AND DISCUSSION OF THE GENERAL PROBLEM 

A.    REVIEW 

As has already been mentioned in the Introduction,   Gordon recog- 

nized in 1958 that the radar-techniques and powerful equipment of today 

are sufficient to permit the detection of incoherent scattering by individual 
1 

electrons in the ionosphere as well as in the adjacent space        If scattering 

is incoherent,   the scattering coefficient   o-    (power scattered per unit power 

density incident at the scattering volume,  per unit volume of scattering,  per 

unit solid angle)  is given simply by 

a  =  N cr       per meter   , (2. 1) 
e 

where   N   is the electron density per cubic meter.    The symbol   cr     denotes 

the scattering cross section of a single electron,    cr    = 7.95 x  10 sin   X 

square meters,    X   being the angle between the incident electric field and 

the direction of scattering. 

A consequence of the approach used by Gordon is the prediction that 

the spectrum of backscatter would have a considerable spread due to the 

Doppler shifts introduced by the random thermal motion of the electrons. 

The spacing   61   of the points of this spectrum,where the power density has 
2 

fallen to one-half of its maximum, can in the absence of an imposed magnetic 

field be easily shown to be 

1     /   T 
6     -  0.424   r-   J-TT—       kilocycles/sec     , 

2 e 

=   18.5   %    J T      kilocycles/sec     , (2. 2) 
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if   \   is in meters,   and   T   is in degrees absolute;    M      denotes the ratio 
e 

of the masB of an electron to the mass of an atom of unit atomic weight 

We now know that Equation {2.. i) holds whenever the distribution 

of the electrons is completely random (irregular) over distances large 

compared to the scale of scattering.        For Equation (2. 2) to hold,   it must 

in addition be true that all electrons can be thought to move in straight- 

line paths without collisions.    We now also believe that Equations (2. 1) 

and (2. 2) should simply be regarded as special cases of more general 

results that apply to scattering of radio waves by an ionized gas in thermal 

equilibrium. 

In the search for a more complete theory of such scattering,  a paper 

3 
written earlier by Pines and Böhm   has been of some importance.    These 

authors analyze the behavior of electrons in the presence of a uniform smear 

of neutralizing positive charge.    In Appendix I of their paper Pines and Böhm 

derive an expression for   <   p-J    >   for the Isotropie case,  where   p-*   is 
Ik1 ^ k 

the spatial Fourier component with the vector wave number   k   of the electron 

density distribution.    (Triangular brackets denote the probability average. ) 

Since the electron density distribution is Isotropie,   the result,   given in 

Equation (2. 3),   depends only on the magnitude,    k,   of the wave number; 

Pk 
Z>-  ^-j- . (2-3) 

(i/zDr+ k^ 

A randonn distribution of particles exists,  for instance,  within a box 
containing a gas of neutral molecules in thermal equilibrium.    The 
essential idea here is that if a box of volume   V   is divided into sub- 
voiumes of size   AV^,   a particle will have the probability   AV-/V 
of being found in the    i**1  subvolume.    If the gas consisted of electrons 
alone,    it is intuitively obvious that the Coulomb forces of interaction 
would tend to oppose the creation of a random distribution,   tending to 
smooth out the irregularities. 
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where    /       is the so-called "Debye length. " 
4 

It can be seen from Villars,   Weisskopf     or our Equation {3. 14) 

that in Isotropie scattering,   the scattering coefficient   a    is,   for unit 

volume,   given simply by 

a-      < j p e       rK 
2>        . (2.4) 

In Equation (2.4)   K   denotes the magnitude.    (4ir/\.) sin 8/2,   of the 

!l scattering wave vector"    K .    The vector   K   is in the direction of 

the sum of two unit vectors:   one drawn in the direction of incidence, 

i.e.,   from the transmitter toward the element of scattering; the other 

in the direction opposite to that of scattering,   i.e..  from the receiver 

toward the element of scattering.    The "scattering angle"    9   is measured 

between the direction of incidence and that of scattering  (Figure 3-1). 

Use of Equation (2. 4) then shows that the density-fluctuation formula (2. 3) 
3 

derived by Pines and Böhm     leads to the scattering coefficient 

4*    .   e 'l 

T   8in 7 
<reN     7  .   br      ,     ' TTT ;      '* 

fc) • i" 
.   e 81nI 

For   I      »     the preceding equation reduces in fact to Equation D 4Tr  sine/2 ^ »    H H 

(2.1),  i.e.,  to   a  =  o-  N .    On the other hand,   for   /      « 
e D 4Tr sine/2 

Equation (2. 1) would according to Equation (2. 5) have in addition the re- 

duction factor, 

6 
2 

4-^ I      sin y 
\       I—T ~\ 
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At backscatter from the ionosphere,   with    I       =  0.25  x   10   *"  meters, 

we have for   X. = 7 meterti 

f     =  2  x  10"5     or     -47 db . (2.7) 
1 

Let us keep the preceding considerations in mind and proceed with the 

historical review. 

Soon after Gordon's prediction of detectable incoherent backscatter 

from the ionosphere,  Bowles was able to confirm the existence of such 

scattering experimentally.   '      According to Bowles the results appeared 

to confirm the scattering coefficient [^Equation (2. l)n of the incoherent 

scatter within   i 3 db .    On the other hand,  the width of the observed 

spectrum of backscatter apparently was much narrower than that of the 

electron thermal Doppler spectrum of Equation (2. 2).    Needless to say, 

if the reduction factor   f     of Equation (2. 6) had been applicable,  Bowles 
1 

would have been unable to detect any backscatter at all at his frequency 

of 41 Mc/s. 

To explain the observed results,  Bowles proposed "a modified 

theory of incoherent scatter. "   He pointed out that although it is true that 

at scales larger than the Debye length the plasma tends to be electrically 

neutral,   in the ionosphere the positive charge does not consist of a uniform 

smear.    Instead,  thermal motions of the positive ions create irregularities 

in ion density which may also exist at scales much larger than the Debye 

length,   since such large-scale fluctuations of ion density will be neutralized 

by corresponding irregularities induced in the electron density.    It is the 

consequence of this idea that at large scales of scattering the width of the 

spectrum of scattering is determined by the thermal motion of the positive 



6 
ions and not of the electrons   (see Section VII-B),    In his report     Bowles 

also derives an expression for the spectrum of backscatter that is narrower 

by about a factor of   tt   than the ion thermal Doppler spectrum that is ob- 

tained by evaluating expression (2. Z) for the atomic weight   M.   of the 

positive ions.    It should be pointed out,   though,   that in speaking of a 

"modified theory of incoherent scatter, "   Bowles apparently assumed 

that the scattering coefficient   <T   -   a   N   should continue to apply v/ithout 
e 

any modification. 

7 
A contribution to the problem at hand was made by Kahn,     although 

he was not directly concerned with the scattering of radio waves.    Kahn 

derived formulas for both charge and electron density fluctuations in an 

ionized gas consisting of electrons and discrete positive ions which carry 

a multiple   q   of the electronic charge.    Kahn's results show that when the 

scale of scattering,    \/{4ir sin 9/2) ,   is much smaller than the Debye length 

I     ,  the scattering coefficient    o-  =  tr   N   of Equation (2. 1) holds.    On the 
D e 

other hand,  if the scale of scattering is much larger than the Debye length, 

o-   N (2.8) 
1 T q        e 

According to Equation (2.8) the scattering coefficient of a gas consisting of 

electrons and singly charged positive ions would,   at large scales of scattering, 

be reduced by a factor of two   to   f (r   N .    It is interesting that the scattering 
e 

coefficient should depend on the multiplicity of charge of the positive ions. 

We should also note that Equation (2. 8) does not depend on the mass of the 

positive ions. 

In his analysis of the scattering of radio waves by an ionized gas in 

8 
thermal equilibrium,   Fejer     not only obtains a general formula for the 
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scattering coefficient,  but also derives expressions for the spectra of 

scattering.    His analysis is for a gas consisting of neutral particles, 

electrons,  and singly charged positive ions,  and leads to the scattering 

coefficient, 

o-  =  o-  N 
e 

Evidently 

1 + 2 " f           'D        1 
2 

X/(4ir sin 0/2) 

2 + 2 « 
lD 

2 

X./(4ir sine/2) 

(29) 

o-  N for 
e 

= 

 fi    «   i 
4ir sin Q/'Z D 

itr  N     for     _ X   Q,.      »   Zn e 4Tr sm Q/2 D 

Fejer's derivation of the scattering coefficient is an extension of the 

analysis of Pines and Böhm discussed earlier.    In the limit of short 

and long wavelengths Kahn and Fejer predict the same scattering co- 

efficient,  if the neutralizing ions are singly charged.    The reduction 

in the intensity of both the ion and the electron density irregularities 

of scales comparable to or larger than the Debye length is brouglu about 

by electrostatic fields that exist in the plasma.    These fields have the 

greatest effects at the largest scales.    They make the electron density 

deviations follow the ion density deviations,  but at the same time they 

also cause a slight smoothing out in the irregular distribution of both the 

ions and the electrons. 
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To derive ehe spectra,  Fejer makes use of the idea that since the 

amplitude of the wave scattered in a given direction is determined by the 

spatial Fourier component with the scattering wave number   K   of the 

electron density deviation   6N ,  the time variation of the scattered field 

may be determined from the time variation of that Fourier component. 

Fejer derives expressions for spectra for four special cases that cover 

the high and the low collision-frequency approximations for scales of 

scattering both long and short compared to the Debye length.    Probably 

of greatest interest is his result that the  3-db loss of the scattered power, 
Q 

predicted for scattering at the large scales,  i. e. ,  when   X, » 4-n I      sin y , 

is mainly at the expense of the power scattered near the frequency of the 

incident wave.    This leads to the somewhat surprising result that the spectrum 

should assume the shape of a shallow saddle for 

4-n- /       sin |   « X. « TT     I     .   sin £       , 
D ^ mi ^ 

where   I is the mean free path of the positive ions.    The dip of this 

spectrum is centered at the transmitted frequency,   and two slightly raised 

shoulders are placed symmetrically about the dip.    (See the solid curve 

of his   Figure 1).    As a result of the dip,   the half-power width of this spectrum 

is larger by about a factor of two than that of the ion thermal Doppler spectrum. 

9 
At a colloquium,  E.   Salpeter      of Cornell presented some theoretical 

results that agree with those of Fejer.    Recently a manuscript has come to 

our attention in which Dougherty and Farley       of the Cavendish Laboratory 

derive similar results by a different method.    Also,   the general expression 

of the scattering coefficient has been derived by Renau by a relatively simple 

11 
analysis. The existence of some spectral content at the frequencies 
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f     ± nf   ,   where   f      is the plasma frequency of the electrons,   has now 

9   10   12 
been predicted by several authors. 

We should finally like to point out that backscatter of the incoherent 

i3 . 
type has lately been observed at the Lincoln Laboratory       at  440 Mc/s. 

Their spectra have an approximate width appropriate to the thermal motion 

of the ions,  and in addition even give an indication of the existence of a 

rather flat top such as that predicted by Fejer,  Salpeter,  and Dougherty 

and Farley. 

B.    DISCUSSION 

At least three approaches have been used to attack this problem. 

We hope in this section to add to the understanding of the problem by 

discussing the similarities as well as the differences of the various 

approaches. 

First of all,  there is general agreement that it is only the scattering 

by electrons that is of any importance,  the positively charged particles 

being too heavy to scatter appreciably.    Furthermore,   everyone also seems 

to agree that the electrons can be assumed to scatter independently,   i. e. , 

the reradiation process of any one electron can be assumed to have no effect 

on any of the other electrons (single scattering by electrons).    The assumption 

that electrons  scatter independently does not mean that the process of 

scattering is incoherent,   i.e.,   that the scattered wavelets of the individual 

electrons can be added directly in terms of power,   nor does it mean that 

no mutual effects (such as Coulomb forces )   exist between the charged particles. 

We list the three approaches used in analyses of single scattering by electrons 

in what we think is their decreasing order of generality: 
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i)   Scattering by individual electrons; 

ii)   Scattering by irregularities in electron density;  and 

iii)   Incoherent scattering by individual electrons. 

Approach (i) is the most general of the three.    In this approach 

the total scattered electric field at time   t   is written as a sum {or integral) 

over the elementary wavelets contributed independently by all the electrons 

of the scattering volume.    It will be shown in Chapter III that for linear 

polarization we have the expression 

2 o      ) 
E(t)   =  0-        —yL.     cos {uTt  +  <j).(t) }     , (2.10) 

e      r''       ; "> i 

where 

o-     is the scattering cross section of a single electron, 
e 

E     is the amplitude of the electric field incident at the scattering 
o 

volume; 

0)      is the radian transmitted frequency;  and 
T 
r   is the distance of the scattering volume. 

What makes the general method (i) very difficult is the fact that in order to 

determine the phase angle   4» (t)   of the radiation received at time   t   from 
i 

the  i      electron,  we would need to know the trajectory of each electron in 

space-time. 

Approach (ii) of scattering by irregularities in electron density is 

obtained from (i) by making the assumption that at each instant the total 

scattered field from the average electron density adds up to zero,  and that 

therefore only the deviations of the electron density from the average have 

to be considered.    Insofar as this assumption holds,    (i) and (ii) should lead 
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to the same results if the phase information is kept in the approach of 

scattering by irregularities as well. 

Approach (iii) of incoherent scattering by individual electrons is 

obtained from  (i)  by makiug the assumption that each phase angle   $.(£] 

of Equation (2. 10) is distributed with equal probability between zero and 

ZTT   radians.    This assumption about the distribution of phases is equivalent 

to the assumption that the spatial distribution of electrons is completely 

random  (irregular)  over distances large compared to a '.vaveiength.    If 

the phase angles of the wavelets are distributed with equal probability 

between zero and   ZTT   radians,  then the oscillations can be added directly 

in terms of power,  because in that case the cross-product terms will 

2 
vanish in the expression for the average value of   E (t) .    In connection 

with the approach of incoherent scattering the following should thus be noted. 

a) Random distribution of electrons is not required over all the 

scattering volume.    It will,  therefore,   not be objectionable if the electrons 

have a larger probability of being found either in the top,  or bottom,  part 

of the scattering volume.    (We require a slowly varying,  not a homogeneous, 

medium. ) 

b) "Whether scattering is incoherent is determined solely by the 

spatial distribution of the electrons.    If the spatial distribution of electrons 

is random,  then scattering is incoherent,   and    o-  =  o-   N .    Electron dis- 
e 

tribution is apparently random over scales much smaller than the Debye 

length. 
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III.    SCATTERING BY MOVING FREE ELECTRONS 

A.    DERIVATION OF EXPRESSIONS FOR ELECTRIC FIELD 

We will now derive some expressions for the scattered electric 

field,  which will be used in the succeeding chapters.    In this derivation, 

let   r     =   r  (t)   be the vector distance from the transmitter   T   to the 
1 1 

free electron,   and   r     =   r   (t)   be the vector distance from the free 
^ Z 

-»■ 

electron to the receiver   R ,    The vector w<. ve number   k      is in the 
1 

direction of the incident wave,   i.e.,    k     =   IZTT/X) fr  /r  );   and   k     is 
1 ' i     i z 

in the direction of the scattered wave,  i.e. ,    k     =  (ZTT/X) (r  /r  )   {see 

Figure 3-1).    In all of our work   co      denotes the radian transmitted fre- 
T 

quency,  and   X.   (no subscript) the transmitted wavelength.    Let us write 

the linearly polarized far-field electric field of the transmitted wave as 

_ E^       i{w   t - "5    • "r    +   d>) 
E     = -^    e      T ll9. (3. 1) 

1 ri 

The amplitude   E      could be a function of the direction of propagation,   i.e., 

of   r   /r    . 
1     1 

The incident field giving rise to the scattered field that exists at 

the location of the receiver   R   at the time   t   was r.he incident field that 

existed at the time   t - Fr ~\/c   at the distance  Fr    ]  from the transmitter 

and  Cr-Z]   fi'om the receiver.     The brackets indicate retarded quantities 

and refer to that position of the electron at. which the radiation was emitted 

that gets to the receiver at precisely the time   t      That is,  the scattered 

field received at the receiver   R   at the time   t   from the electron is due 

to the excitation 

E i{wT (t -Cr l/c) -Ct I. Cr J+ <t>} 
CE J = —2—     e       T Z 11 

1 CO 
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This can be written in our vector notation as follows 
-♦- 

E 
DZJ 

i {coTt - Ek^ • C?^ - Cy • Ctp + * > 
1      O "J 

1 

(3.2) 

The electric field of Equation (3. 2),  acting on the electron,  gives rise to the 

acceleration of the electron 

ra 

"St     —i -V E e o 
m m 

i_    1-J 

(wTt - CkJ • C? "] - f t j • C* D + 4> ) 
i 1 1 z z 

(3.3) 

is given by 

The far-field electric field of an accelerating particle of charge   q 

14 

E     = ——3—__ 
4v i    c^     L^U 0 

o 

J_ r? J x (Ct n x cri) (3.4) 

where   r   is the distance from the particle to the observer and   r     the 
o 

unit vector in the direction of the observer.    In  our case, expression (3.4) 

becomes > 

E - e 
2       4Tr €    c       O  H 

o 2 
r { r _ ^CEP (3.5) 

Now let   x    denote the angle between the direction of the retarded 

incident electric field  [JD 3]  and ^e retarded direction of scattering 
1 

Cr  j.    Then 
2 

/ \ 

r 
J r2 

r 
L   z J 

\ 

L   2j 
x CE/J >   = CEJ Binx "l L-nt]   .        (3.6) 

where   TI    is a unit vector in the direction of   r     x   {"r     x E    } .    (The 
Z 2 i 

unit vector   r\    is perpendicular to   r     and lies in the plane defined by 
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the two vectors   E     and   r    . )    Let us further observe that 
1 2 

e    smX ^o       . j /-im 
 V = -Tiisr ßmx = ffe     ' {3-7> 
4ir «   mc 

o 

where   o-     is the scattering cross section of a single electron that appears 
e 

in Equation (2. 1).    Using Equations (3. 3),   (3. 6),  and (3. 7) in Equation (3. 5), 

we obtain the following expression for the scattered  field at the receiving 

site at time   t: 

i       E i {«mt - cX'j • C? n - C£ n ■ CTü + A } E     =   cr2      -      e        T       ^   1^     ^   H    ^   Z-1    ~   2^     ^ V   j   _ 
2 e    Cr Xr H 

4        2 (3.8) 

Since by definition  Qk H  i8 in t^16 direction of |_r  j,   and Qk 31   in t^6 

direction of  \_T ^j,   we have 

Lk^ ■ C^p + Ck^ • [^p = ^I   Cr^ + Cr^'}      . (3. 9) 

so that Equation (3.8) could be written simply as 

Note that  Lr Zl + [Ir Zl   is t^16 total path length from the transmitter   T   to 

the receiver   R   via the moving electron at the time the radiation is emitted 

that gets to the receiving site at precisely the time   t . 

Equation (3. 8) can be put in a form that is often used in the scatter 

theory.    It is easily verified that 

= Is     •   TR  +  K  •  "r , (3. 11) 
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where   K     =  k    -  k     is the so-called "scattering wave vector" whose 
1 1 2 

magnitude is   (4IT/\) sin 9/2 . 

—». -«» 
Setting    -k    ■    TR  + d> =  S ,   one can write Equation (3.8) for the 

2 
scattered field from the moving electron as 

1 IJTJ   • 

(3. 12) 

It should be emphasized that we have only taken into consideration 

the acceleration of an electron resulting from the incident electric field. 

Our results show that for such radiation the formulas for moving electrons 

differ from those derived for electrons fixed in their equilibrium positions 

only by being in terms of the retarded distances  Cr .U  and Cr
?H   instead 

of simply in terms of   r      and   r    . 

In order to write down the expression for the total scattered electric 

field we really do not have to track individual electrons,   but can pay attention 

to fixed points of space instead,   and work in terms of electron density. 

The argument is as follows. 

A contribution to the signal is received at the time   t   from a distance 

r      from all those electrons that happened to be at that distance within the 

beams of both antennas at the time   t - r  /c .    Every electron that was at 

the distance    r      at the time   t - r  /c   was given,   at that instant,  by the 

incident electric field,  the acceleration, 

E i{cot-k-r     -k    •r_+d)} 
f-        e        0'T 1 1        2        2       VJ 
a  -   - —   —-    e 

m     r 
1 
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The field at the receiving site      R   at the time   t   resulting from such an 

electron can be written immediately on the basis of our previous work; 

_* i        E i{ut-K-f.   +   §} 
E     =    a*      SL_     e        T 1 

6     rir2 
?      -»    .   .      e      " -n 

Now let   N ("r   ,   t - r  /c)   denote the spatial electron density,   evaluated 
1 ^ 

for the distance   r     at the retarded time   t -r,/c .    The total scattered 

field at the receiver   R   is then obtained by integrating over the scattering 

volume   V . 

if    N(T      t-r  /c)     ^ Mwt-K.T+f) 
E      =  o-a ——^    Ti   E     e      T 1 dV   . 

R e     J rir2 
V 

(3.13) 

According to the theory of scattering, only the deviations   5N   of the electron 

density from its average value have to be taken into account,   so that in the 

expression (3. 13) ,   N(r   ,  t-r  /c)   could be replaced by   6N ( r   ,   t-r  /c) . 
12 12 

Except for the appearance of the retarded time   t - r   /c ,   Equation (3. 13) 

4 
is then equivalent to expressions derived previously    on the basis of a 

macroscopic approach 

It is usually assumed that   r   ,   r   ,    K   and   p    remain practically 

constant throughout a volume   V   ,   which could be a subvolume of the total 
i 

scattering volume   V .    On the basis o£ the definition of the scattering co- 

efficient   cr    given in Section II-A,   we would then obtain from Equation (3. 13) 

We avoid the term "the received field, "   since no account has been taken 
of the pattern of the receiving antenna. 
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for the subvolume   V     the scattering coefficient, 
i 

*   =  *      Y- < K.   t-r   /c 
2' 

> 

where   p-*        is the Fourier component of the electron density fluctuations 
K, t 

defined by 

iK   ■    r 
6N ( r   , t)   e 

1 
dV 

K. t 

If the process of scattering is time stationary,  then the ensemble average 

of 

that case 

PK) t 
does not depend on the time   t   for which it is evaluated.    In 

v: 
i 

P-> 
K > (3.14) 

If the distribution of   6N   is isotropic,  then the preceding expression depends 

only on the magnitude,    (47r/\) sin 8/2 ,   of the scattering wave vector   K, 

and not on the direction of it.    Equation (3. 14),   derived on the basis of a 

microscopic approach for moving electrons,   is identical with the expression 

of the scattering coefficient that follows from a macroscopic approach. 

It should be noted that although Equation (3. 14) applies in the case of an 

anisotropic distribution of the electron density deviations    5N ,   ic is based 

on Equation (3. 3),   in which the acceleration of the electron was assumed 

to be independent of the direction of the incident electric field.    This 

assumption will be discussed in the next section. 
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B.    EFFECTS OF APPLIED MAGNETIC FIELD 

In writing Equation (3. 3) we have neglected the effects of an applied 

magnetic field on the oscillatory motion performed by an electron under 

the influence of the incident electric field.    The question thus arises:    If a 

magnetic field is in fact present,  under what circumstances are the formulas 

of the preceding section atill applicable ? 

We should note that in the Maxwell equation for the curl of the magnetic 

field of the wave, 

V x H  =  J  +   ^p =  J   +  €o -§^-        , (3. 15) 

the oscillatory motion of the electrons enters directly through the current 

density   J ,    It is well know that in the absence of an external magnetic 

field the oscillatory motion of electrons in such that the real and the dis- 

placement current terms of the preceding equation can be combined,  leading 

to 

V x H  =   .      fl _ JL.] |E.  =  e9|L H,i6) 
o "at- = e"5r 

where   w     is the electron plasma frequency.    In the derivation of Equation 
P 2 2 

(3. 16) it is assumed that   v « w     ,   where   v   is the electron collision 
T 

frequency.    The dielectric constant    e/«     of such a plasma is thus given 

2      2 simply by the quantity   1 - co /w 
2 2 

If the imposed electric field is sinusoidal,    v   « w    ,   and an external 
T 

magnetic field is present,   then the real and the displacement current terma 

of Equation (3. 15) can still be combined,  but Equation (3. 16) now has to be 
15 

written in tensor form as follows: 
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V x H) 

( V x H) 

(V x H) 

u JW     u 
b JL 

u 2        Z, 
to   - (<o      - w. ) 

T     T        b 

2 
+ Ja>b WP 

to       ((O       -   CO     ) 
T      T        b 

1  ■ 

2 

2       2" 
to      - co 

T        b 

In this case the dielectric constant thus assumes the form of a tensor,   given 

by the expression in the parentheses of Equation (3. 17).    In the preceding 

expression   co     is the radian gyromagnetic frequency   eB/m   of electrons, 
b 

2 2 2 2 
It is easily seen that if both   co    « co      and   co     « to    ,   then the 

b T p T 
off-diagonal terms of the tensor can be neglected,   in which case Equation 

(3. 17) reduces to Equation {3. 16),    That is,  as far as the  forced  oscillation 

of an electron is concerned,   the presence of an external magnetic field can 

be neglected if 

2 2  ^      2 
CO       <v   CO co     «to 

P T 

These inequalities do,   in fact,   hold at frequencies   u      used in incoherent 

scattering. 

C.    AMPLITUDES OF ELECTRON OSCILLATION 

We saw in the preceding section that the effects of an external 

magnetic field on the OÄcillatory motion of an electron can be neglected 
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2 2 2?. 
if   cj    « u     ,    w    « w     .      We will now also show that at the frequencies 

b T p T H 

of tens and hundreds of megacycles per second used in incoherent scattering, 

ths oscillatory motion of an electron is of a very small amplitude.    Such a 

conclusion will be useful,   since it will allow us to picture electrons as 

gyrating freely about the magnetic field,  with the incident electric field 

causing only a small perturbation in such motion. 

The far-field power density   S   of a radar of gain   G   is given by 

S  =  lj    G       , (3. 18) 
4IT h" 

where   h   is the distance to the point of observation,  measured along the 

center-line of the antenna beam,  and   P      is the transmitted power.    Using 

the relation 

477 Aeff G=-^Z—       . (3.19) 

where   A        is the effective area of the antenna,   one can put Equation (3. 18) 
eff 

in the form 

PTA 

(3.20) 
h2 XZ ' 

If the electric field of the wave at the point of interest is assumed to be of 

the form   E = E     cosu   t,   then   S = E  /ZL,   where   L    is the characteristic 
ox 0 

impedance of free space,     t, =   120 TT mks units.    In that case,   use of 

Equation (3.20) for    S   gives 
i       i 

i 
,*        T 

pi   A2 

E     =   (2C)' 
0 h\ 

d2T e   - From    j-   =   - .— E,   where    r   is the displacement of an electron,   by 
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integration we obtain immediately 

e E 
r   =   r      cosco   t 

o T moü 
«■    cosw   t 
Z T 

The ampiitxide of the oscillatory motion of the electron is thus given by 

mw 
{2t) 

2        T 
hk 

mc 

(2Ü 
4Tr 

x 
2 PT   A 

•6   Di   A 
I 

1.36 x 10        Pa   -if-  X 
T 

(3.21) 

Using the very large antenna of  A     =   300 meters  and setting   h = 300 km = 
5 6 

3  x  10     meters and   P     =10     watts,   gives the amplitude of oscillation   r 

as only 
-6 

r     =   1,36 x  10      X 
o 

-6 
For   X. - 0.7  meters  (=  430 Mc/s)  we obtain   r     =  0.95  x   10       jneters, 

o 
which is only of the order of the wavelength of visible light. 
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IV.    DERIVATION OF LINE SPECTRUM OF BACKSCATTER WITH RADAR 
BEAM DIRECTED PERPENDICULAR TO MAGNETIC FIELD 

A.    INTRODUCTION 

In this chapter we will derive the spsctrum of incoherent backscatter 

under the assumption that each electron is free to gyrate about the magnetic 

field.    The beam of the radar is supposed to be directed perpendicular to 

the magnetic field. 

We will find that under the assumptions made in the analysis,   the 

spectrum of backscatter will consist of lines,  the separation of which is 

equal to the gyromagnetic frequency of the electrons.    The envelope of this 

line spectrum will be derived in the next chapter.    In Chapter VI the results 

will be extended to propagation at an arbitrary angle to the magnetic field, 

including both backscatter and forward scatter. 

The results of Chapters IV-VI are strictly valid only if both the scale 

of scattering and the gyro radius of the electrons are much smaller than the 

Debye length.    According to the discussion given in Chapter VII the results 

might,  however,   constitute a useful first approximation even at scales of 

scattering much larger than the Debye length,  if in that case the mass (and 

thus the gyromagnetic frequency) of the positive ions is substituted for the 

mass of the electrons. 

It should be stated that in our work all of the received signal is 

assumed to be due to incoherent scattering only.    We will also assume for 

the moment that the magnetic lines of force lie in the surfaces of constant 

phase so that any electron drift along the magnetic field will produce no 

change in the phase of the signal of backscatter.    Finallyi   drift motions 

of the whole medium are assumed to be absent so that our spectra are 

centered at the transmitted frequency. 
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B.    ANALYSIS 

According to the results of the previous chapter,  if an electron is 

located near the   z  axis and the field incident upon it is taken as 

E 
EJt)   = -~-   sin{u   t - kz + 4>)       , (4. 1) 

then the electric field of backscatter at the radar from the electron is 

given by 

i    E 
En(t)   --   -v3-   -~±    sinCu^t - ZkCzJ +   4,)        , (4.2) 

_i 
where   cr2   is the scattering cross section of a single electron.    The quantity 

e 
QzT]   is the   z  component of the retarded position of the electron,   i.e.,   the 

z   component of that position in which the radiation was emitted that gets to 

the radar at precisely   t = t . 

Now let the j      electron gyrate freely about the magnetic field at 

the distance   z   .   from the radar at its thermal velocity.    It was shown in 
oj 

Section III-B that if the frequency of the incident electric field is much 

higher than both the electron gyromagnetic as well as its plasma frequency, 

then the magnetic field has little effect on that component of the electron's 

motion that is due to the incident electric field.    Thus the forced vibration 

of an electron,  which we saw to be of an extremely small amplitude,  can 

be assumed to be perpendicular to the   z  axis,   and the   z   component of the 

•  . /■   »        ^h .       , •       t    , position of the  j       electron is given simply by 

z (t)   =  z   .   +  R.   8in(w t  +  u )        , (4. 3) 
J oj j b j 
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B     ANALYSIS 

According to the results of the previous chapter,   if an electron is 

located near the   z  axis and the field incident upon it is taken as 

E 
E.W   = -~    sin{w   t - kz + <j))        , (4. 1) 

then the electric field of backscatter at the radar from the electron is 

given by 

1    E 
E_(t)   --   -v*   -Z-    fcin(co_t - ZkCzJ +   4»)        . (4.2) 

K. e     ZZ i 

i 
where   cr2   is the scattering cross section of a single electron.     The quantity 

e 
[_z^]  is the  z component of the retarded position of the electron,  i.e.,  the 

z   component of that position in which the radiation was emitted that gets to 

the radar at precisely   t = t . 

Now let the j      electron gyrate freely about the magnetic field at 

the distance   z   .   from the radar at its thermal velocity.    It was shown in 

Section III-B that if the frequency of the incident electric field is much 

higher than both the electron gyromagnetic as well as its plasma frequency, 

then the magnetic field has little effect on that component of the electron's 

motion that is due to the incident electric field.    Thus the forced vibration 

of an electron,  which we saw to be of an extremely small amplitude,   can 

be assumed to be perpendicular to the   z  axis,   and the   z   component of the 

position of the  j"     electron is given simply by 

z (t)  =  z   .  + R.  8in(w t + a )       , (4. 3) 
j oj j b j 
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where 

eB u)     =  —    is the gyromagnetic frequency of electrons; 

R.   is the radius of gyration of the  j       electron;   and 

\i     is its phase of rotation relative to some referenc e 
J 

For the retarded position of the electron we havt 

r       n (      ^j^ ,       ,   ; ] =   z ' t  -   —J j 
J 

Jt-^i 

th 
where the last expression holds if the thermal velocity of the  j       electron 

is much smaller than   c .    Thus,  approximately, 

\Zz.{t)2 =  z       +   R.   sin- 
z    . 

wbr-c   ^j 

=   z       +  R    sin(co t + 9 ) , (4. 4) 
oj j t. j 

z 
where    9    =  u.  - w     _2i. 

j J        b     c 
If Equation (4.4) is substituted in Equation (4. 2) and the arbitrary 

phase angle   $   is set equal to   IT,   then we obtain for the field of backscatter 

at time   t   reculting from the  j       electron,   the expression, 

i     En 

Rj e      z2 
j 

CO t - 2kR    sin(w t + 9 )  - 2kz     I   . (4. 5) 
T J b j ojj 

The total field of backscatter at the radar is given by the sum over 

all electrons that participate in the process of scattering,   i.e   ,   by 

E(t) =   o-1    E    Z_,    ~    sin] w   t - 2kR. 3in{w t + 9 ) + vb. I   ,    (4  6) 
e       o   j       z2 |   T J V   b j        ^jj V 

j 
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where we have set    -Zkz       = ip   . 

It should be noted that we are dealing here simply with a case of 

phase modulation:   the component of the electron's motion perpendicular 

to the surfaces of constant phase gives rise to the sinusoidalphase-modul< 

term   -2kR.   sin (a> t + 9.)   in the expression for the backscattered electric 

field.    Expression (4. 6) can be expanded by steps already known to those 

acquainted with the theory of frequency and phase modulation.    If we assui 

z     -   z 
1 2 

z    =  7, ,  the result can be put in the form (see Appendix 
J 

a    Eo     ) 
e     z2 

J    (2kR.)   sin(w   t + ty.) 
j   o j T J 

oo 

+   )       (-i)n   J    (2kR )   sin ({u    + nw )t + nO   + "I*. 
hi n J ^    T b j        Ji 

oo / 

V     J    (ZkR.) sin [{wr 

n=l ^ 

nu ) t - n9   +4' (4.7) 

where   J   (2kR.)   denotes the Bessei function of the first kind,   order n, 

and argument   2kR   .    According to the preceding expression,  the spectral 
j 

content of the scattered field is located at   w     ± nw   .   n = 0,   1,   2,   . . . , 
T b 

where   u     is the radian gyromagnetic frequency of the electrons.    Note 
b 

that in the preceding analysis it has not been necessary to assume the 

process of scattering to be incoherent; Equation (4. 7) is based on the 

assumption of free gyration of electrons about the magnetic field. 

In order to get an expression for the power spectrum of back- 

scatter,  we will now,  in fact,  make the assumption that the spatial dis- 

tribution of electrons is random.    From Equation (4. 7) the ensemble 
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average of the power at a frequency   w     ± nu     is proportional to 
T b 

VZJ^J   (S.) J
n(^.) sin j(uT ±nw  )t ±n0. + vjj, | sin j (CJ    ± nu^) t ± nG. +•»».)> 

=  2_<J^(^.)   sin    f(wT inwb)t ±ne. ++. 1 > 

.1 L^<C 3  (^.) J  (5.) sin ((«     + nu ) t + nB. + Oi. j sin  (w     + nw  ) t ± nG. + vji,    > 
jjHjni \T b JJ/ \T b X        xj  " 

(4.8) 

where we have set   %   = 2kR  .    In writing Equation (4.8) we have already 
j j 

assumed that the average of all terms involving products of different fre- 

quencies is zero. 

In the preceding expression the phase angles   nG   + 4*     antl   -nG. + 4» 
j        j J        j 

are determined by both the location of the center of gyration of the  j 

particle and also by its phase of rotation.    We could thus write 

nB    + 4^    =  a       +«• . 
J J PJ rJ 

where the phase angle   a   .   is determined by the location of the center of 

rotation,  and   a       by the phase of rotation relative to some reference.    A 

similar expression can be written for    -nG   + ty   .    We now assume   a   .   and 
j        j PJ 

a       to be independent random variables with a uniform probability distribution 

between zero and   2-rr  radians.    We also assume the distribution of   ^    = 2kR 
J J 

to be independent of that of the phase angles   a   .   and   a     .    In that case the 
PJ rj 

second term of Equation (4.8) vanishes,  and the first term reduces to 

lL<3Zii.)> ■ (4.9) 
n     J 
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For random distribution the average power density at a frequency 

oj     +  nw   ,    or   u     - noo   ,   is thus equal to 
T b T b 

P     =  a       °        L< 3   (&.)> (4.10) 
n      e   2;z4     j       ^   J 

watts per square meter.    As before,    £,    is the characteristic impedance 

of free space.    If a total of  NV  electrons participate,   then 

(4. 11) 
Z 

P     =   NV cr       —O      <J2 (§)>        • n e    2U4 n       ' 

Summation over all lines gives the total power density 

2 CO g** 

W  =  P    +2     VP     =NVo-      ^-x     . (4. 12) 
o ^      n e    2;Z

4 

n=l 
since 

co 

J     +   2 
o 

n=l 

y j2 -1 . (4.i3) 
i_i       n 

According to the preceding, <^ J   (^)> can also be interpreted as 
n 

the fraction of the total power contained in both the line at   w     + nw     and 
T b 

the line at   w     - mo    .    It should also be noted that Equation (4. 12) yields 
T b 

the scattering coefficient   er   =   er  N   of Equation (2. 1).     This is what should 

be expected,   since Equation (4. 12) is based on the assumption that the spatial 

distribution of electrons is completely random. 

C.    DISCUSSION 

1.    Line Spectrum and the Irregularity Approach 

We should first like to point out that if the electrons can be assumed 

to gyrate unperturbed about the magnetic field,   a line spectrum of backscattei 
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would also result in the first approximation,   if we looked al th« problem 

completely from the point of view of scattering by irregularities in electron 

density.    Let   r   denote the radial distance from the radar,  and let us 

assume that the magnetic field vector lies in the surfaces of constant phase. 

We can then say that the free gyration of electrons recreates periodically 

the electron density versus    r ;   that is,   we would have 

N jr,   t + —-)    =   N(r.   t) 
b. 

where   n = 0,   i,   2,   . . . ,  and   f     is the gyromagnetic frequency of the 

electrons.    In that case we should expect a signal of backscatter of the 

form 

where 

E(t)   =  A(t)   cos  {w^t  + #(t) } 

n A (t + jM   =  A(t) 

and 

<M t + ^Lj   = #(t) 

for small values of   n .    As   n   increases,   the preceding two approximations 

become progressively less accurate,   if we permit the charged particles to 

drift along the magnetic lines of force,  which they in fact do.    (See the dis- 

cussion at the end of the Section C-2 following. )   If the expresBion for   E(t) 

is expanded and Fourier series expansion used for   A(t),   cos *(t)   and 

sin $(t) ,    E(t)    can be put in the form of the line spectrum derived in 

33- 



Section IV-B, 

E(t)   =  A     cosw   t  4-  B     sinw   t 
1 T 1 T 

+  A     cos {(x)      + u )t   +   B     sin(w      ± w  ) t 
2 '   T  "^    b' 2 T b 

+  A     cos (w      +  2üJ  ) t   +  B     sin(w      +  2GJ  ) t 
3 T b 3 X   T b 

where the   A's   and   B's   are undetermined constants. 

2.    Causes of Smeai'ing of Spectral Lines 

First of all,   smearing of the spectral lines will be cauaed by any 

deviations from the assumed free gyration of the electrons.    We know that 

in the upper ionosphere the collision frequency of electrons with other 

particles is much smaller than the electron gyromagnetic frequency.    How- 

ever,   electron motion can be affected by relatively weak electric fields, 

both internal and external.    Existence of any irregular electric fields of 

scales smaller than the scattering volume would certainly lead to some 

smearing of the spectral lines,  but it is not well known how important such 

fields are in the upper ionosphere. 

Even if the electrons could be assumed to gyrate unperturbed in 

the magnetic field   ,   there would still be some smearing of each line.    In 

ionospheric work it seems quite valid to assume that the lines of magnetic 

force have a negligible curvature relative to that of the spherical surfaces 

of constant phase of backscatter.    Thus,   even though the center of the 
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radar beam is directed perpendicular to the magnetic field,   except at the 

center of the scattering volume,   a particle drifting along the magnetic field 

would have a component of motion either away or toward the radar.    If   Q 

is the beamwidth of the radar in radians,   then the resulting spreading of 

a line because of Doppler shifts is of the order of 

Af   =   2 
< jvj >   0/2 

where <jvj> is the average speed of drift of an electron along a magnetic 

line of force. For a Maxwellian gas the relation between temperature and 

average speed of particle motion along a line can be shown to be given by 

■H>-J 2kT 
Trm 

where   m   is the mass of the particle in kilograms and k is the Boltzmann 

-23 constant,    (k =  1.38   x   10 joule per degree Kelvin).    For electrons 

<|vj>  =   3.1  x   10     tfT    meters/sec     ; 

therefore 

1 x io3 O 4-^ Af  =   3.1  x   10     Q   -~—      cycles/sec     , (4.14) 
A. 

if   \   is in meters.    On the other hand,   the separation of the spectral lines, 

i.e.,   the gyromagnetic frequency of the electrons,   is given by 

6 
f     =   2.8   x   10      B cycles/sec 
b gauss 

The spreading given by Equation (4. 14) is thus a fraction, 

1.11   x   IG"3     Q jl (4. 15) 
KB V ' 
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of the line separation.    If we use   fi - k/d,   where   d   is the effective 

diameter of the antenna aperture,  then Equation (4. 15) reduces to 

l.H   x   10 -3 
B  d 

{4. 16) 

which does not depend on wavelength.    For the values of temperature and 

magnetic field to be expected in the vicinity of the earth,  this ratio is 

quite small for large diameter antennas used in incoherent scattering. 

If we were dealing with incoherent scattering by electrons that 

had the thermal characteristics of ions of atomic weight   M ,  then the 

corresponding fraction would be 

47.7  x  10 •3 J/MT 
B  d 

(4. 17) 

Expression {4. 17) is larger than (4. 16) by the factor     A/M/M ' = 43 t/h 
.. electron 

If in Equation (4. 17) we set   T =  i600OK,      B = 0.5 gauss,  and  VM = 4 
.(. 

appropriate to the   O    ions,   then Equation (4. 1?) becomes    15.3/d,   where 

d   is the effective antenna diameter in meters.    Thus,  unless the antenna 

diameter is considerably larger than   15 meters,   the ion line spectrum would 

be smeared simply because in the ionosphere the curvature of the magnetic 

lines of force is quite small compared to that of the spherical surfaces of 

constant phase of backscatter. 

Even if electrons gyrate unperturbed and the magnetic field lies in 

the surfaces of constant phase,   some smearing of the spectral lines will 

occur,  because electrons may drift along magnetic lines of force.    An electron 

drifting along a magnetic line of force will cross the antenna beam.    The 

amplitude of the radiation received from such a drifting electron will thus 
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actually be a function of time,   varying from zero through a maximum 

back to zero again.    The spectrum of the signal received from each 

electron is for that reason really not a pure line spectrum as has been 

assumed previously,  but is slightly smeared to begin with.    This 

smearing is of the order of    1/T cps ,   where    T   is the time taken by 

the electron to cross the beam. 
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V.    ENVELOPE OF THE LINE SPECTRUM 

A. INTRODUCTION 

The result of the analysis of the previous chapter was a line 

spectrum,  with the line separation equal to the gyromagnetic frequency 

of electrons.    We will now derive the envelope of this spectrum.    The 

main assumption is that the electron velocity distribution is that appro- 

priate for a gas in thermal equilibrium 

B. ANALYSIS 

1.    Distribution of    ^  =  4irR/\ 

It was shown in the previous chapter that the fraction of total power 

contained in both the line at   GJ     +  no»     and also the line at   w     - nw     is 
T b T b 

equal to the average value of   J     (£) .    We will now determine the distribution 
n 

of   £ ,  which we need in an evaluation of   < J    (£,)> . 
n 

We should first note that 

*   =_K_   _  IC^-   -    -^ (5   1) 

where   V   is the linear velocity of a gyrating electron,  measured in a plane 

perpendicular to the magnetic field,  and   V     =  X u /4-tr.    We are thus inter- 
o b 

ested in the distribution of   V,  which can be interpreted as the magnitude 

of the projections of electron velocities on a plane. 

According to the kinetic theory of gases,   in a Maxwellian gas the 

probability that the   x  component of a particle's velocity is between   v 
x 

and   v    + dv   ,   that the  y component is between   v     and   v    + dv   ,   and 
x       x y y        y 
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that the  z  component is between   v     and   v    + dv   ,   is given by 
z z z " 

/   ß   \3      -P2(v2 + v^tv2) 
f(v  ,   v  ,   v ) dv    dv    dv    = {-4- )      e x       "       z    dv    dv    dv       . 

x     y      z       x     y     z      \rrt / xyz 

(5.2) 

If in the preceding expression the velocities are measured in meters per 

second,   then in . 
i 

I        \z        /m   M\ 

m   is the mass of the particle in kilograms, 

M   its atomic weight, 

m     =   1.66 x  10"   '   kg   is the mass of a particle of unit atomic weight 
o 

-23 k  =   1.38  x  10 joule per degree absolute is the Boltzmann constant 

T   is in degrees absolute. 

It follows from Equation {5. 2) by integration over   v     that the 
z 

probability of having   v     between   v     and   v    + dv   ,  and   v     between 
x x x x y 

v     and   v    + dv     is 
y y       y 

r _PZ -ß2(v2 + v2) 
e            x        y    dv    dv 

y      * x      y 
f(v  ,   v ) dv    dv 

x       y        x       y 

Now let   v    = V cos 0 ,    v    = V sin 6 .    The elemental area in the 
x y 

new system is given by   V d9 dV .    We obtain 

rift        ? -ß    V 
f{V,   9) dV de  =  S^   28    V e dV 

Since    9   is distributed uniformly and independently between zero and   2ir 

radians,  the distribution of   V   can be obtained immediately from the 
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preceding equation.    It is 

„2     2 
2 -p    V 

f(V)dV =  2ß    V e dV       , (5.4) 

with   p   given in Equation (5. 3).    In a Maxwellian gas the magnitudes c£ 

projections of particle velocities on a plane thus obey the so-called 

"Rayleigh distribution. " 

We actually require the distr'bution of the variable   j; = V/V   , 

with   4   given in Equation (5. 1).    If   V = V  £   is inserted in Equation (5.4) 
o 

we obtain 

2      2 -P2 Vo  ^ f(^) de  =  2p    V^e   e 0        d£ 
o 

2 .2 
=  2a24   e'a    &    d^ , (5.5) 

where 

2        .2     2       moM   /Xwb V 

a    = P   Vo = -ZFT 

u     being the radian gyromagnetic frequency of the particle.    Insertion of 

the constants in the preceding expression gives 

a2  =   1.5 x  10"5 \2f2    H 
b      ■'■ 

3  B where   X   is the transmitted wavelength in meters.    But   f    = 1.525 x 10     r-» cps, 

if   B   is in gauss; therefore 

a2 = 35AMT- = 35^     ' (5-6) 

where the parameter 

X      „ B meters     gauss 
Y = — B ■ 

J MT . 
abs 
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will appear often in the work to follow. The symbol M denotes the lutij 

of the mass of the particle involved (electron or positive ion) to the mass 

of an atom of unit atomic weight. 

2 
2.    Evaluation of   < J   (|) > 

n 
The fraction of total power contained in both the line at   OJ    + nw 

T    2   b 
and   oj     - nw   ,   n = 0,   1,  2,   . . . ,   is given by the average value of   J   (£;) , 

T b n 
i. e. ,  by 

<j2(e)> =   /   j2(e) ta) ^     . (5.?) n In 

Insertion of   f{|)   from Equation (5.5) gives 

oo 

2 / 2    2 -a  £ 
<J   (£)> =   /      2a^ J   (e)   e       5    de (5.8) 

n / n 

Integrals of the type of that appearing on the right-hand side of Equation (5.8) 
16 

have been treated in the theory of Bessel functions. Evaluation of 

Equation (5. 8) gives 

2 -x 
<J   (§)>   =  e       I (x) , (5.9) n n 

where   I  (x)   denotes the modified Bessel function of the first kind,  order 
n 

n,   and argument   x .    In Equation (5.9) 

x =  —     -        =   _—   , (5. io) 

where 

Y   = 

1   1 CL 01429 
2a2   70 Y2 

_ z 

\  t   B meters  gauss 

^   abs 
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3.    Approximate Expressions for   <J   {£) > 
n 

In order to satisfy the requirements of incoherent scattering in 

the upper ionosphere,    x   turns out to be much larger than unity.    We will 

now show that for such values of   x   the envelope of the line spectrum,   if 

the latter is normalized to unit total power,   is given approximately by 

f - C T 

A(f) 
258 (i/^y^fffTl 

(5, 11) 

where   f      denotes the transmitted frequency in cycles per second,  and 
T 

X.   the transmitted wavelength in meters.    We should note that the exponential 

of the preceding expression represents precisely the envelope of the power 

density curve for incoherent scattering at long mean free paths in the absence 
2 

of an external magnetic field. 

In a derivation of Equation (5. 11),  we first make use of an asymptotic 
16 

series for   I  (x) ,  which enables us to write 
n 

<r     (-I)""   {4n2 - 1} {4n2- 32}   ...    {4n2 ^ (2m-l)Z } 
.m .m 

</(x)>=   i      y 
rr.=0 (2x)      4     m! 

After rearranging,  the   m      term    of   t/TrnT   <J   (4) >   can be put in the form 
n 

'-""^ [h 

(5. 12) 



1 

Note that 

-n /Zx _    r- m      i n^\ 
e 

rn^O ra=0 \ / 

Comparison of Equation (5. 12) with the  m      term of Equation (5. 13) shows 

2 2 Z L 
that they are approximately equal for   (2m-l)     «  4:n   •   i.e.,  for   m    «n 

-n  /Zx 
We will thus have the result that if the series for   e converges suf- 

ficiently rapidly-,  i. e. ,  if 

m=0 ^ 

7 ? 
where /Tl   satisfies with sufficient stringency the requirement "/fy     « n   , 

then 

<j2(e)> = -_!=-   e'
n /2x   , (5.14) 

where 

n VZtrx 

0.01429 
x  = 

K B 
meters     gauss 

The requirements for the approximation (5. 14) to hold are considered in 

more detail in Appendix II. 

We next note that the gyromagnetic frequency of particles of atomic 

weight   M   in a magnetic field of B gauss is given by 

3 
f    =   1.525 x  10     B/M   cycles/sec    . (5.15) 
b 

In terms of the parameter   -y , 

f     =   1.525  x   10     ^   */-r7      cycles/sec   . (5.16) 
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We can thus write 

-n2/2x -n2 Y2/2 (0.01429) - ("oWj Y 
I 

=   e 

ny       1.525 x  IQ3 (1/X)   ^T/M n Y       i 

nf. 

525 x  i05 (l/X)   VT/M 

2 

258 (l/M   A/TTM (5.17) 

A curve centered at the transmitted frequency,  which for   (f - f   )    = (nf ) 
T b 

coincides with Equation (5. 17),  is 

f    -   ir 

258 (l/M   V*7M 
(5.18) 

Substitution of Equation (5. 18) in Equation (5. 14) then yields Equation (5. 11). 

C.    DISCUSSION 

It is important to note that in case the spectrum consists of many 

lines,   its width is given simply by the thermal Doppler spectrum that would 

have existed in the absence of any magnetic field.    This means that if the 

average radius of gyration of the particles is comparable to or larger than 

the wavelength,   then the total width of the spectrum is not reduced,  even 

though the radar beam is directed perpendicular to the magnetic field. 

However,  as the parameter   y = \B/ yMT    approaches infinity,   i.e. ,  in 

the limit of very small radii of gyration,  the spectrum reduces to a single 

line that is located at the transmitted frequency.    In this case the particles, 

like beads on a wire,  can only drift along the magnetic lines of force 
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parallel to the surfaces of constant phase. 

Three sample spectra are rep-roduced in Figures 5-1,   5-2,   and 

5-3   (see also Figure 6-3).    Note that,   as the parameter   -y   is reduced, 

the Gaussian Doppler spectrum becomes an increasingly better fit to the 

envelope of the line spectrum.    It can be shown that the average radius 

of gyration,   <R>,   is equal to   0.012 x AJMT/B  meters.    Thus   <R>/>,  = 

O.OiZ/y .    It follows that for Figures 5-1 and 5-2 the average radius of 

gyration is smaller than the wavelength,  whereas for Figure 5-3 the opposite 

is true. 

Figure 5-1 is drawn for   y = XB/e/MT  =  0.124 .    For a wavelength 

of 0.7  meters  (430 Mc/s),  this value of   y   is satisfied in the ionosphere 

for electrons somewhere in the height range from  1,000  km  to  3,000  km. 

For   y  =  0.069   of Figure 5-2  the corresponding range is from about   2S000 

to  4,500  km.    However,   since in the height ranges mentioned the Debye 

length   I       is still smaller than   0.7  meters,  the actual spectra of back- 
D 

scatter from such heights may bear little resemblance to Figures 5-1 

and  5-2.    (See the discussion in Chapter VII.) 

/ i—— -2 
The relation   y = X.B/'yMT  =  0.5975  x  10     ,   for which Figure 5-3 

was computed,   would be satisfied for   O     ions at about   200 km for a wave- 

length of   1.5  meters   (200 Mc/s).    The same value of   y   would apply for 

electrons somewhere in the height range from about   ^.000 km  to   3,000 km, 

if a wavelength   X. = 0.03  meters   (10,000 Mc/s)   is used. 
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VI.    SPECTRUM WITH PROPAGATION AT ANGLE TO MAGNETIC FIELD 
(BACKSCATTER AND FORWARD SCATTER) 

A. INTRODUCTION 

In the preceding two ch .pters,  the spectrum of incoherent back- 

scatter was analyzed under the assumption that the narrow beam of a radar 

is directed perpendicular to the magnetic field.    We will show in this 

chapter that it is possible to modify the results derived previously to include 

the general cases of propagation at an angle to the magnetic field for both 

backscatter and forward scatter.    In order to simplify the analysis the 

restriction is placed on forward scatter that the scattering volume,   located 

at a great distance from the transmitter and the receiver,  is at an equal 

distance from both. 

B. GEOMETRY 

The phase-modulation spectrum of the previous chapters was the 

result of sinusoidal time variation in total path length in radians from the 

transmitter to the receiver via the moving electron.    In the case already 

treated,   this variation is given simply by 

—    R   8in(u t + constant phase angle)      , (6.1) 

We will now show that as far as the effects of the rotation of an 

electron are concerned,  Equation (6. 1) holds in the general case with 

the modification that instead of the actua   transmitted wavelength   X. ,  the 

formulas contain the modified wavelength, 

(6.2) 
1       cos a   sine/2 
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where   a   is the angle between the magnetic field and a plane that is parallel 

to the line   TR   and perpendicular to the plane of propagation,  and   6   is 

the angle between the direction of incidence and that of scattering (Figure 6-1). 

If the electrons are restricted to drift only along the magnetic field,   then 

the Doppler shift  results derived for backscatter and no magnetic field have 

to be modified by use of another modified wavelength. 

\ 
sma   sin xnW/T 

(6.3) 

We begin the derivation of Equation (6. 2) by noting from Figure 6-1 

that for an electron that is rotating but not drifting, 

and 

r   (t) 
l 

=  r       + R cosß  (t) 
lo 1 

r   (t) 
2 

r       +  R cos ß   (t) 

where   j3     is the angle between   R   and   r   ,   and   ß     the angle between 
1 1 2 

R   and   - r Thus the total path length from the transmitter to the receiver 

by way of the rotating electron is given by 

r (t) 
1 

+ I r   (t) r       + r 
lo        2o 

R  (cosp  (t) + cos ß  (t) |     .        (6.4) 

From Figure 6-1, 

-• d   -• -♦ r       =  T   a     +   z     a 
lo       ^      y o     z. 

- d   - -r       =-y   a     +   z     a 
2o       ^      v o     z 
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furthermore,   inR.   =   R    a     +-R    a    +R    a,   we have 
xx y    y z    z 

R     =  R  cosw t  cos 4?       , 
y b 

R     =   R   sinu t   cos a 
z b 

Thus 

R •   r, R  i   cos w t cos cb  +   R K     sinw, t  cos a 
r~, a lO t H OD 
R    COS ß       =   -T-3 =  

1       r r^ I    lo I lo 

and,   since    r        =   r       , 
lo 2o 

- R y   cosw  t  cos 4>   f   R z     sinw t  cos a 
R cosß     =- i- H __ 2 -__2  

2 r 
lo 

Therefore, 

z0 R (cos ß    + cos ß  )   =   2R   ——     COSQ   sinjjit        , 
1 2 r 

lo 

=   2R   sin—   cos a   sinu t 
2 b 

The same distance in radians would be 

\0     -'/ 

4TT 9 
-r-   R   sin T    cos a   sinw  t . (6.6) 

K C b 

As we wanted to show,   this is of the same form as Equation (6. 1) if in 

Equation (6. 6) we use the modified wavelength 

S   :::   cos a   sinÖ/r ' (6-2) 

Turning our attention next to Doppler shifts,   we note that if an 

electron is drifting along the magnetic field with a velocity   v,    this motion 
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will give rise to a Doppler shift 

v     + v 
f-f     =    R  T.      , (6.7) 

where   v      is the component of electron's velocity toward the receiver and 

v      the component toward the transmitter.    But 

v     =  v     =  v    sin O/Z  =  v  sina   sinG/2       , 
R T z 

and therefore 

f-f     =  2^    sina  sin 0/2 (6.8) 

At backscatter,   in the absence of a magnetic field,  the corresponding 

expression in the case of an isotropic velocity distribution would be 

f-fT =  2X      . (6.9) 

Expression (6.8) is of the same form as Equation (6-9) if in 

Equation (6. 8) we use the modified wavelength 

(6.3) 
2       sina  sin 6/2 

This is what we wanted to prove. 

C.    MODIFICATION OF LINE SPECTRUM 

Let us dispose of the simplest extension to the results of the 

previous chapters first.    This is the case of forward scatter with the 

magnetic field in a plane that is parallel to the line   TR   and perpendicular 

to the plane of propagation,  i.e.   a = 0 t   At the magnetic equator,  forward 

scatter in any direction satisfies this requirement.    Here the line spectrum 
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still applies,   but the fraction of power in both the line at   w     + nw     and 
T b 

w^ - mo     is,   instead of Equation (5. 10),  now given by 
T b 

<r( 
n   \ 

t    .   e > =  e"7 I (y) 
n 

(6. 10) 

where 

and 

0.01429 
y = —2— 

i  

i;        sin 6/2 
y    _    meters gaus s {6.11} 

Here,  as before,    ^ = 4TTR/\ ,  and   9   is the angle of scattering. 

In order to see how Figures 5-1,   5-2, and 5-3 have to be modified 

to apply in this case,  let us use Figure 5-1 as an example.    The lines 

shown in that figure were computed for   y - KB/^MT  =  0.124.   where   \ 

was the wavelength used in the backscatter experiment.    The width of the 

line spectrum was approximately that of the spectrum given by 

2 

According to Equation (6. 11),  if   \   is the wavelength used at forward 

scatter at   9=6,   a = 0 ,   then the amplitudes of the lines of Figure 5-1 

apply for   -y    =   (X/sin 7)   B/nJMT  =  0.124 .    The width of the line spectrum 
9 c 

is given by that of the spectrum 

f - £_ 

258 (1/X) (sin 6/2) ^T/M' 
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With M assumed to be constant, we can thus say the following 

about the spectra of forward scatter for the special case   a = 0 : 

i) If the strength of the magnetic field B and the temperature 

T   are fixed,  the spectrum of forward scatter at the wavelength 

\ = K sin y    is identical to the spectrum of backscatter at   X. 
f. s. b. s. ^ b 

ii)   More generally,   spectral lines are identical for 

=  constant 
9       sin 6/2        ^/^ 

The width of the  multiline spectrum is independent of the strength of the 

magnetic field.    The {»pacing of the   3~db points of the envelope of the spectra 

is given according to Equation (Z. 2) by 

3in 6/2 If 
0.424 •—r       A/'M kilocycles/sec 

In the general case of a scattering angle   9   and an angle   a   between 

the magnetic field and a plane that is parallel to the line   TR   and perpendicular 

to the plane of propagation,  the spectrum of scattering of one electron is as 

shown in Figure 6-2.     According to the results of Section B of this chapter, 

the frequency f'of Figure b-^Z is notthe transmitted frequency   f      but the 
T 

Doppler-shifted frequency, 

v       . .9 r-    Bin a    sin y 

= f     + 2 v (6.12) 
T X 

2 

In Equation (6. 12),    v   is the drift velocity of an electron along the 

magnetic field in that direction which yields a component along the negative 

direction of   z . 
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f-2f, f-f f f+f, f + 2fb 

Figure 6-2.    The spectrum of scattering resulting from one electron. 
^ = 4irR/\ ,   where   R   is the electron gyromagnetic radius. 

It is now important to note that although the resultant spectrum 

becomes smeared as a result of the Doppler shifts,   each electron still 

has a line spectrum,  as shown in Figure 6-2.    We could thus imagine 

turning the smeared spectrum back into a line spectrum by shifting the 

spectrum of each electron along the frequency axis by the amount of its 

Doppler shift,  but in the opposite direction.    In such a corrected spectrum 

the fraction of total power at both the frequency   f     + nf     and   f     - nf 
T b T b 

would according to Equations (5. 10) and (6. 2) be given by 

where 

and 

XJ    (^  cos a   sin9/2)-'> =  e  "  I  (z) 
n ^ n 

0.01429 

9, a 

 meters 
Q> a,       COSQ   sin 9/2 

SB 

jauss 

rMT 

(6.13) 

(6.14) 

(6.15) 
X/fr 
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The shape of the actual spectrum can be calculated by considering 

it to be a superposition, of Gaussian spectra that are centered at each of 

the frequencies   f    ±nf,   n =  0,   1,   Z,   . . . .    The amplitudes of the 
X b 

— 21 
component spectra are proportional to   e      I  (z;) .    Thus the component 

spectrum located at   f     +nf     is given by 
T b 

f - f    Tnfb 

.258 (l/XJ  TOST 
p (f)   = A   e      I (z)   e    I 6 ) , (6. 16) 

n n 

where 
x 

\     -        meters 
2  ~   sin a  sin 6/2" ' 

and   A   is a constant of proportionality,  which is the same for all component 

spectra. 

The result,  Equation (6. 16),   can be put in terms of the parameter 

y  =  \. B/HJMT    as follows:   From Equation (5. 16) 

Thui 

and 

f     =   1.525 x  10     X      I— cycles/sec 

.    9 j r-ffr- sma   sm y 
258  T-     i  TÄ   = 0-l69 =-      U 

0,01429       .23 2 
sin     T    cos  a 

V"                                            .      /0.01429       .29 2  \ p  (f)   =  A   e I      j 5——    sin     y   cos  a ) 
2     Bi"    I 

■^.169  sin a  sin 0/2   f   /y     } (6-17) 
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D.    SAMPLE SPECTRA 

Figures 6-3   to   6-5 show the effect on the spectrum of incoherent 

backscatter of increasing the angle   a   between the surfaces of constant 

phase and the magnetic field from zero to ten degrees.    The results apply 

for 

v =   X"^ersJVu88    s  0 0488 (6  18) 

^/MT 

If we use   X. = 0.7 meters  (430 Mc/sec),  and   ffM  =   1/43   appropriate 
-3 

to the electrons,  then   y - 0.0488   yields the ratio   B/ffl  ~   1.62 x  10   , 

which might correspond to conditions existing at a height of about   3000 km 

above the surface of the earth.    At that height the condition   4w i      > \, 6 D 
where    I       is the Debye length,  might also be satisfied. 

If,  on the other hand,  we set   K = 12 meters   (25 Mc/s),  and think 

in terms of incoherent scattering by electrons having the thermal characteristics 

of 

to low ionospheric heights.    Of course,  in this case the gyromagnetic frequency 

if   O    ions,  then   A/M  -  4,   and   B/zyT  =  1.63 x 10"   ,   which corresponds 

f   ,   and thus the separation of the spectral lines,  would be that of the   O 

ions   (47.6  cps   for   B = 0.5 gauss).    At the wavelength of   12 meters the 

parameter   y = 0.0488   would also apply at a height of about  2000 km,  where 

the controling positive ions are protons. 

The significant feature of Figures 6-3   to   6-5 is that they show a 

rather rapid smearing of the spectrum as   a   is increased.    A curve was 

also calculated for   a = 15   ,  but is not reproduced,   since it would be in- 

distinguishable from the Gaussian Doppler-shift curve that would apply in 

the absence of any magnetic field. 

According to our assumptions,  the smearing of the line spectrum is 

caused only by thermal drift motions of the particles along the magnetic field. 
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Since a reduction in temperature will reduce the velocity of such motions, 

we would expect the spectral smearing to be smaller if the temperature is 

reduced.    This expectation is confirmed by a comparison of Figures 6-5 

and 6-6.    Figure 6-6 is computed for    y = 0.069   and thus,   if   \,   B,   M   are 

assumed to remain unchanged,   the ratio of the temperature used in Figure 

, 2 
6-5 to that used in Figure 6-6 is   (0.069/0.0488)     =   2.0.    As the temperature 

is decreased there actually also exists an effect tending to oppose the 

resolution of the spectral lines:    smaller thermal velocities imply smaller 

radii of gyration of the electrons;  smaller radii of gyration,   in turn,  would 

give rise to weaker   l!sidebands. " 
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VII,    APPLICATION TO SCATTERING IN THE UPPER IONOSPHERE 

A.    SCATTERING AT SMALL SCALES IN PRESENCE OF MAGNETIC FIELD 
6, 8-10 

It is a consequence ox recent theoretical work, thus far 

supported by experimental evidence,    '    '       that the spectra derived in 

Chapters IV-V1,   if evaluated for the atomic weight of the electrons,   should 

not be expected to apply unless the scale of scattering is smaller than both 

the Debye length and the electron mean free path. 

It also appears that the magnitude of the electron gyro radius relative 

to the Debye scale is of some importance.    For our analysis to apply,   it is 

necessary for the electrons to gyrate unperturbed in the  magnetic  field. 

(By  "unperturbed"  we mean that any deviations from a helical path in 

directions perpendicular to the magnetic field should be small compared 

to the scale of scattering. )   If the electron gyro radius is large compared 

to a Debye length,   each gyration will carry an electron through many Debye 

volumes with the result that the chances for introducing perturbations (and 

thus of additional smearing of spectral lines) are increased.    Electron drift 

sideways along the magnetic lines of force through many Debye distances 

may have the same effect.    In the height range from about   1000 km to 

10, 000 km the electron gyro radius is of the same order of magnitude as 

the Debye length.    Around the peak of the F layer the Debye length is con- 

siderably smaller than the electron gyro radius. 

It is our opinion that much could be learned about the actual motion 

of electrons in the outer ionosphere by comparing our spectra with experi- 

mental results.    According to Figure 7-1,   such an experiment would have 

to be performed at a relatively small wavelength.    An experiment at three 
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centimeters with a steerable antenna that could be directed normal to 

the magnetic field would be extremely interesting. 

With respect to Figure 7-1,   it öhould be said that at the moment 

not very much is known about electron densities above the F layer.    Even 

6000 

UJ 
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- 2000 

1000 

O 
© 

*   i   i i i i 

0.001 0.005 0.0i 

METERS 

0.08 0.1 

Figure 7-1.    Variation of the Debye length with height for two 
models of the outer ionosphere. 
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less is known about temperatures at such heights.    The electron densities 

used in our calculations were taken from a curve proposed for an "average" 

17 ionosphere at summer noon,   middle latitudes,  and sunspot maximum. 

Smaller values of electron density would make the Deb ye length larger 

{I      =   69  vT/N     meters,   if   N   is in per cubic meter). 

As to the temperature,  one current view is that an isothermal layer 

exists above the level where collisions become rare; the estimates for the 

temperature of that layer range from about  1000   K to   2000° K.    The other 

18   19 idea,  proposed by Chapman, is that the ionospheric temperature in- 

creases continually upwards until it reaches,  at a few earth's radii,  the 

temperature  (=  200.000   K)  of a hypothetical solar interplanetary atmosphere. 

Figure 7-1 gives curves of Debye length for both temperature models. 

B.    SPECTRA IN PRESENCE OF MAGNETIC FIELD AT LARGE SCALES 
OF SCATTERING 

We will now discuss the statement,  made in the Introduction,  that 

our spectra might represent a useful first approximation even at scales of 

scattering much larger than the Debye length,  if the" gyromagnetic frequency 

of the positive ions is substituted for that of the electrons.    One might now 

ask the question:   Since only the electrons are supposed to do the scattering, 

why,  then,   should the gyromagnetic frequency of the ions have an effect on 

the received spectrum ? 

According to Equation (3. 13),  changes in the signal of backscatter 

are due to changes in electron density.    It is thus of no consequence by what 

motions of individual electrons this change in distribution of electron density 

is brought about.    Let us suppose the ions to gyrate freely,  and let us also 

suppose the electron density to be equal to the ion density at each instant. 
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The resulting signal of scattering would be indistinguishable from that 

which would result if each gyrating ion were accompanied by one and the 

same free electron. 

Now,   since an ionized medium tends to remain neutral over scales 

much larger than the Debye length,  the electron density will indeed follow 

the ion density over such scales.    If the positive ions could be thought to 

gyrate freely,   the signal of scattering at large wavelengths would be as 

one would expect if the electrons moved with the thermal characteristics 

of the positive ions. 

For the ion gyromagnetic frequency to assume at large scales the 

role played by the electron gyromagnetic frequency at small scales, the 

crucial requirement is that^ the  ions    gyrate unperturbed.    Such motion 

would recreate periodically the distribution of irregularities of ion density 

in directions perpendicular to that of the magnetic field.    The large-scale 

irregularities of electron density would then assume the same periodicity. 

We should note in this connection that some electrostatic fields are set up 

in the process of maintaining neutrality.    As has been shown by Fejer, 

in the absence of a magnetic field these electrostatic forces have an effect, 

although small,  on both ion distribution as well as on their motion.    This 

is the reason why the spectrum deviates from the ion thermal Doppler 

spectrum.    In the presence of a magnetic field even some additional internal 

electric fields might exist because the electrons,  which have a relatively 

small gyro radius,  have difficulty in following the ion density irregularities 

across the magnetic lines of force. However, as was first suggested by 

Bowles, it is still possible that,at large scales of scattering, enhanced 

spectral content will be observed at frequencies determined by the gyro- 

-67- 



magnetic frequency of the ions, if the narrow beam of a radar is directed 

perpendicular,   or at a small angle,   to the magnetic field.    On the other 

hand,  it is certain that the smearing of the spectrum will be much more 

severe than that shown in Figures 6-4,  6-5,   and 6-6.    Also,  it is probable 

that the envelope of such a spectrum will be approximated better by the 

shape of the   "saddle-spectrum"  derived by Fejer and others than by the 

shape of the Gaussian Doppler spectrum shown in all of our figures. 
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APPENDIX I.    DERIVATION OF PHASE-MODULATION SPECTRUM 

Expression {4. 6) can be expanded as follows.    Let 

ZkR    =  i      , wt+^sx, wt + esy 
j j T j b j 

Then 

sin {w   t - 2kR    sin(w t + 9 )   + 4i   } 
T j b j j 

s  sin {x - |    sin y } 
3 

sin x cos (^    siny)  -  cos x sin (|    «in y) 
j j 

smx 
oo 

J    (S.)   +  2    Y     J,   (§.)  cosZny 
o     j £_.        <in    j 

n=l 

CO 

icosx- 2;     J,        (I )   3in(2n-l) y 
n=l 

Here   J   (^ )   denotes the Bessel function of the first kind,   order n, and 
n     j 

argument   ^   .    We can now make use of the relations 
j 

2 sinx cos 2ny =   sin(x + 2ny)   +  sin (x - 2ny)       , 

and 

2 cosx  sin (2n - 1) y =   sin { x + (2n-i) y } -   sin { x - (2n-l) y } 
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Thus 

sin    {x - ^    sin y ) 
j 

CO 

J    (|.) sinx  +    }       J      (I.)   {sin(x+ 2ny) + sin (x - Zny) } 0      J *—'.       2n     J n=l 

oo 

Y    J,      .(§.)   ( sin (x + {2n-l)yj- sin (x - (2n-l)yj  } 

n=l 

OO 03 

J(| ) sinx +   )       (-l)n J   (i.) sin(x + ny)   +   V    J   (|.)   sin (x - ny| 

n=l n=l 

That is, 

sin   {w   t - 2kR.   sin (w t + 9 )   + OJ   } T J b j J 

oo 

J   (2kR.)   sin(aj   t+ 4/.)   +   V   {-i)nj  (2kR.) sin [(w     + nw )t + nG   + di   } 
o J T ] La n j T b j        j 

n=l 

00 

+ 

n- 1 
ZJ (2kR.)   sin {(u     - n« ) t - ne   + 4»   } 
_.     n J T b j       j 
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APPENDIX II.    ANALYSIS OF VALIDITY OF THE GAUSSIAN APPROXIMATION 

Let us now investigate in greater detail the conditions under which 

n 

2 
1 - n /2x 

e 
Afeirx 

(II. 1) 

We have stated in Section V-B3 that Equation (II, 1) will hold if the 
Z/2x series for   e"n  ' converges so rapidly that 

n  /2x m     l 2 
n 
2x 

m 

(II. 2) 

in=o 

2 2 
where /^   satisfies with sufficient stringency the requirement ^Jf    « n     to 

make 

4n 4n 
1      (2fo- *)' i   1 

Since we are dealing with an alternating series,  Equation (II. 2) will 

hold if 

W (H) « Ti (n, x) (II. 3) 

whe re   TI (n, x)  = e'     '   x   is a number.    In place of/l^     « n     write 

where   k    «1.    Inequality (II. 3) then becomes 

.       ,    kn ^ n 
r\ (n, x) x       » 

2kn 

2kn (kn) ! 
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Write this as 

pr\x 
kn  >        > 

2kn 

2kn (kn) ! 

where   0  < p «   1 .    By Stirling's formula 

(kn) !   =   (2kmr)a  (kn)        e"  n 

We thus need 

kn . 
x       «? p i     -1 

■n 
n 

2kn kn 

2kn (2rkn)5 (kn)kn 

or 

>      -1/kn       -1/kn x  c   p n 
 d/(2kn)  
(2Trkn)   ^       ' kn 

A n n/2kx 
.    ,   .      -1/kn n g 
=   ^ P l/(2kn) 

k(2Trkn) 
(II. 4) 

The preceding involves   x  on both sides of the equation so that it has to be 

solved by trial and error.    The results of such a solution are given in 

Figure 11-1 for   k = C.l,    p = 0.01 .    Actual calculations show that Equation 

(II. 1) is a good approximation in the range   20 ^ n  S 40   for   x   as low as 

400 ,  which is about a third of  x of Figure II-1. 
min 
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